挑战桥梁建设难关的“巾帼英雄”——记贵州公路集团总工程师张胜林******
【劳动者风采】
光明日报记者 吕慎 陈冠合
很难想象,一位看似柔弱的女子常年跋涉在人迹罕至的山川峡谷间,指挥建造起一座座巨大的桥梁。贵州公路集团总工程师张胜林就是这样一位巾帼英雄,她怀着改变家乡面貌的初心和使命,风雨无阻,矢志不渝,足迹遍布黔山贵水。
生在贵州的张胜林从小就对家乡千沟万壑、交通闭塞有着刻骨铭心的记忆,梦想着有一天能飞出大山。高考时,本来想学生物工程的她却被北京工业大学交通工程专业录取,从此就跟钢筋水泥打起了交道。
20世纪90年代初,正值北京城市交通蓬勃发展的时期,张胜林经常跟着老师和专家来到立交桥的施工现场,巨型的机械、构件,让她大开眼界。“那时我就爱上了造桥这项工作,迫不及待想把学到的知识用到家乡的建设中!”
1993年,刚毕业的张胜林作为一线技术员,参与了贵州省瓮安县江界河大桥建设。第一次去现场,为了寻找最佳的设备安装位置,她徒手爬上高梯,任务完成了,腿还在颤抖。
彼时,技术人员少之又少,张胜林一个人承担了项目测量、质检等多项工作。从底模制作、施工放样到安装模板、绑扎钢筋,再到浇筑混凝土、构件安装,每个工艺工序,她都在场。
大桥建成,张胜林坐在山岭高处,望着桥上的汽车和行人,幸福感让她忘却了时间,一坐就是几小时……江界河大桥就这样开启了她的梦想之门。
建设重庆江津观音岩长江大桥时,由于长江水流湍急,大吨位浮吊无法到达桥位区。她连续熬夜几十天,写下了一本密密麻麻的技术手册,创造出“门式浮吊拼装钢围堰施工工法”,不仅在长江上创造了一个枯水期完成深水基础施工的新纪录,还为该项目节约资金1158万元。
建设广州新光大桥时,没有可借鉴的资料,经过艰苦思索、反复试验,张胜林提出了一项新工艺——“拱肋大节段提升安装技术”,对推动行业吊装技术进步具有重大意义,该桥也获得了“詹天佑奖”和“鲁班奖”。
“赶上贵州交通发展的大好时机,我是幸运的。”张胜林说,党的十八大以来,在脱贫攻坚伟大事业的带动下,贵州高速公路、高速铁路建设进入了前所未有的繁荣期。
“我们贵州的造桥人都有创新基因,因为这里的每一座桥梁都像一件独一无二的艺术品。不仅外观造型不一样,更重要的是桥位区地形地质条件千差万别,设计施工都得拿出与众不同的方案。”
贵州大小井特大桥是世界最大跨径的上承式钢管混凝土拱桥,桥台所在山坡峰顶与河底相对高差约250米。张胜林带领团队运用大数据技术,实时数据远程自动传输、存储和报警,实现了塔架自动纠偏和索力自平衡。
在建设世界第一混凝土塔高的三塔斜拉桥——贵州平塘特大桥这一世界级工程建设及技术研究中,她组织研发了缆吊与扣挂自动化控制系统,实现了桥梁缆吊和扣挂施工智慧化和精细化施工,平塘特大桥也荣获第38届国际桥梁大会(IBC)古斯塔夫斯·林德撒尔奖。
30年来,张胜林参与和主持建造的大小桥梁不计其数,获得两项国家级工法、5项发明专利。她先后被评为全国劳动模范、全国三八红旗手、十大桥梁人物,被誉为“桥梁艺术家”“桥梁女神”“最美造桥人”。
“困难只能吓倒懦夫懒汉,而胜利永远属于敢于攀登科学高峰的人。”张胜林说,“每当遇到困难时我总用茅以升先生这句话激励自己,新时代呼唤无数迎难而上的科技工作者,我愿意成为其中一员。”
《光明日报》( 2023年01月05日 04版)
利用光力系统实现非互易频率转换******
记者10日从中国科学技术大学获悉,该校郭光灿院士团队的董春华教授研究组通过光辐射压力实现两光学模式和两机械模式间的相互作用,进而实现了任意两模式间全光控的非互易频率转换。该研究成果日前发表在国际期刊《物理评论快报》上。
光学和声学非互易器件在构建基于光子和声子的信息处理和传感系统中是非常重要的元器件。虽然磁诱导非互易已广泛应用于分立光学非互易器件,但在器件集成化方面仍面临挑战。同时,磁诱导声学非互易由于效应较弱,也难以实现集成的声学非互易器件。腔光力学系统是实现无磁非互易的有效系统之一,在之前的工作中研究组已经演示了基于腔光力相互作用的无磁光学环形器。
在前期工作基础上,研究组研究了单个微腔中光子和声子的非互易转换。利用两个光学模式和两个机械模式通过光力相互作用构成闭环四模元格,这四个模式具有完全不同的频率,分别为388THz、309THz、117MHz和79MHz。研究组演示了四个模式中任意两个节点之间的非互易转换,包括声子—声子(MHz—MHz)、光子—光子(THz—THz)和光子—声子(THz—MHz)的非互易转换。该非互易转换的原理正是利用光力微腔中的多个模式构建人工规范场,通过控制光的相位实现规范场中几何相位,从而可以实现全光控制的灵活的非互易转换。接下来,在该元格中引入第三个机械模式,实现了声子环形器,该环形器的方向受两个独立的控制光相位决定。
据悉,这一研究结果可以推广到微腔内其他的光学模式和机械模式,构建更多节点的混合网络,实现信息在混合网络中的单向传输,这在通讯和信息处理领域具有潜在的应用,特别是在光学波分复用网络和用于连接不同频率下工作的分立量子系统。(记者吴长锋)
(文图:赵筱尘 巫邓炎)